Preliminary communication

A new, stereospecific method for the synthesis of 2,3:5,6-di-O-isopropylidene- α -D-mannofuranosides

JANUSZ JURCZAK

Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa (Poland) (Received March 1st, 1982; accepted for publication, April 19th, 1982)

Glycosylation reactions have been effected with glycosyl halide derivatives 1,2 , sugar 1,2-orthoesters 1 , sugar 1-acetates 3 , sugar 1-carbonates 4 , sugar 1-sulfonates 5 , sugar 1-(N-methylacetimidates) 6 , glucosylisoureas 7 , and 1-thioglycoside derivatives 8 . Although methods for the synthesis of 1,2-trans- and 1,2-cis-glycosides are well established, there is still a need for efficient and stereospecific condensation reactions leading to either α or β anomers.

We have been interested in the application of ready available 9 N-(glycosyloxy)-phthalimides, which have a potential good leaving-group, in the stereospecific synthesis of glycosides, and we now report on an efficient method for the preparation of 2,3:5,6-di-O-isopropylidene- α -D-mannofuranosides (4) from N-(2,3:5,6-di-O-isopropylidene- β -D-mannofuranosyloxy)phthalimide (3) and various alcohols in the presence of SnCl₄, as shown in Scheme 1.

Compounds 2 and 3 were prepared as described earlier⁹. The β-anomer 3 (m.p. 146–147°) was condensed with methanol, ethanol, 2-propanol, *tert*-butyl alcohol, cyclohexanol, benzyl alcohol, and phenol severally in the presence of 30% of SnCl₄ in dichloromethane at room temperature for 24 h. The products, 2,3:5,6-di-O-isopropylidene-α-D-

mannofuranosides 4, were isolated in yields of 66-76% by chromatography on silica gel (benzene-ether, 95:5), followed by distillation under reduced pressure. The physical constants and analytical data are recorded in Table I.

TABLE I

DATA FOR 2,3:5,6-DI-O-ISOPROPYLIDENE-Q-D-MANNOFURANOSIDES^a (4)

Product	R	Yield (%)	B.p./Torr ^b or m.p. (degrees)	[\alpha] \frac{20}{D} (chloroform) (degrees)	Lit. 10 $\left[\alpha\right]_{\mathbf{D}}^{25}$ (degrees)	¹ H-N.m.r. data ^d (CDCl ₃) H-1, δ
4a	Me	70	71/0.3	+49 (c 5.1)	+48.9	4.86 (s)
4b	Et	74	75/0.3	+48 (c 5.1)		4.95 (s)
4c	i-Pr	74	81/0.2	+54 (c 5.1)	+53.0	5.08 (s)
4d	t-Bu	66	89/0.3	+49 (c 1.4)	+49.4	5.30 (s)
4e	C_6H_{11}	76	102/0.2	+63 (c 5.1)		5.08 (s)
4f	PhCH ₂	75	119/0.3 53-54	+81.5 (c 1.45) ^c	+78.3	5.09 (s)
4g	Ph	72	105/0.2 91 <i>-</i> 93	+115 (c 1.65)	+114.7	5.69 (s)

^aAll products gave satisfactory microanalyses (C, $\pm 0.36\%$; H, $\pm 0.36\%$). ^bBath temperature. ^cIn acetone. ^dObtained with a Jeol JNM-4H-100 spectrometer at 100 MHz; values are in good agreement with those reported ^{10,11}

Each of the above reactions afforded the α anomer 4 only. The α anomer 2 did not react with methanol in the presence of SnCl₄ (30 mol%) during 24 h at room temperature. However, with a higher concentration of catalyst (100 mol%), 41% of the α -glycoside 4a could be obtained. Some 2 remained and the β anomer 3 was formed. Thus, 3 is formed first from 2 and then reacts to give 4a.

The reaction described offers a convenient and efficient approach to the stereospecific synthesis of α -furanosides.

REFERENCES

- 1 G. Wulff and G. Rohle, Angew. Chem. Int. Ed. Engl., 13 (1974) 157-216.
- 2 R. U. Lemieux, K. B. Hendriks, R. V. Stick, and K. James, J. Am. Chem. Soc., 97 (1975) 4056-4062.
- 3 B. Helferich and E. Schmitz-Hillebrecht, Ber., 66 (1933) 378-383.
- 4 S. Inaba, M. Yamada, T. Yoshino and Y. Ishido, J. Am. Chem. Soc., 95 (1973) 2062-2063.
- 5 S. Koto, Y. Hamada, and S. Zen, Chem. Lett., (1975) 587-588.
- 6 J. R. Pougny, J.-C. Jacquinet, M. Nassr, D. Duchet, M.-L. Milat, and P. Sinaÿ, J. Am. Chem. Soc., 99 (1977) 6762-6763.
- 7 K. Tsutsumi, Y. Kawai, and Y. Ishido, Chem. Lett., (1978) 629-632.
- 8 T. Mukaiyama, T. Nakatsuko, and S. Shoda, Chem. Lett., (1979) 487-490.
- 9 E. Grochowski and J. Jurczak, Carbohydr. Res., 50 (1976) C15-C16.
- 10 R. A. Boigegrain, B. Castro, and B. Gross, Bull. Soc. Chim. Fr., (1974) 2623-2627.
- 11 M. H. Randall, Carbohydr. Res., 11 (1969) 173-178.